Comparing Dynamic Causal Models using AIC, BIC and Free Energy
نویسندگان
چکیده
منابع مشابه
Comparing Dynamic Causal Models using AIC, BIC and Free Energy
In neuroimaging it is now becoming standard practise to fit multiple models to data and compare them using a model selection criterion. This is especially prevalent in the analysis of brain connectivity. This paper describes a simulation study which compares the relative merits of three model selection criteria (i) Akaike's Information Criterion (AIC), (ii) the Bayesian Information Criterion (B...
متن کاملComparing dynamic causal models.
This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is, the connectivity pattern between the regions included in the model. Given the current lack of de...
متن کاملAic and Bic Formodelingwith Complex Survey Data
Model-selection criteria such as AIC and BIC are widely used in applied statistics. In recent years, there has been a huge increase in modeling data from large complex surveys, and a resulting demand for versions of AIC and BIC that are valid under complex sampling. In this paper, we show how both criteria can be modified to handle complex samples. We illustrate with two examples, the first usi...
متن کاملComparing Families of Dynamic Causal Models
Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This "best model" approach is very useful but can become brittle if there are a large...
متن کاملSimulation Results for Markov Model Seletion : AIC, BIC and EDC
Higher order Markov chains, by its very definition, is the most flexible model for finitely dependent sequences of random variables. In practical settings, estimation of the dependency order is needed to identify other model parameters. Based on the penalized log-likelihood function and within nested hypotheses testing framework, several estimation alternatives have been proposed. The AIC, Akai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2012
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2011.07.039